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=  QOpen-source package for numerical optimization on high-performance architectures
— Some development funded under SciDAC-1 and SciDAC-2
— Built on the PETSc infrastructure and linear solvers
— Has been used in many applications since initial release in 2000 (over 6,700 downloads)

e Chemisty (NWChem), Nuclear Physics (UNEDF — HFBTHO, HFODD, MFDn)
* Image processing, Machine learning, Medical applications

= Support for a range of optimization types with varying derivative requirements
— Unconstrained and bound-constrained optimization methods
e Black-box methods — POUNDER and others
e Gray-box methods — POUNDERs for nonlinear least squares
e Gradient-based methods — quasi-Newton methods
¢ Hessian-based methods — Newton with a trust region and/or line search
— PDE-constrained optimization methods using derivatives
e Linearly constrained augmented Lagrangian method
— Methods for complementarity problems and variational inequalities
e Active-set methods
e Semismooth Newton methods

min: f(x): I=sc(x)su

http://www.mcs.anl.gov/tao




PDE-Constrained Optimization

min: f(x,y): c(x,y)=0

= Simulation c uniquely determines state variables x given decision variablesy
= Goalis to determine decision variables to optimize some metric

=  Many ways to solve problems depending on available information
— Nonlinear elimination of simulation constraint

e Derivative-free optimization applicable when there is a small number of decision variables
e Gradient-based methods used when adjoint information is available

— Newton-based schemes
® Linearized constraints
e (Quadratic approximation of objective function
e Solve a linearly-constrained quadratic program
= |mportant questions that need to be answered:
— What is the objective function? Is it smooth?
— What are the design variables and how many? Are there discrete choices?
— What are the constraints and how many? Are there design and state constraints?
— Are global solutions important? Is the problem convex?
— How much derivative information is available?



Three Views of the Designh Optimization Problem

= Unconstrained and bound-constrained optimization
— Combine optimization criteria into a single objective
— Eliminate the simulation constraint and solve reduced problem
— Apply derivative-free or gradient-based methods
— Additional constraints can be imposed
e Analytic constraints with full information
e Simulation constraints with partial derivative information
= Constrained optimization
— Produce a single objective and possibly restrict feasible region
— Apply a constrained optimization method to the full problem
— Use Newton-based methods
= Multi-objective optimization
— Construct Pareto surfaces
— Explore surfaces to make tradeoffs



Derivative-free Design Optimization

Simultaneous Objectives
Maximize performance while

Avoiding potential disruptions due to instabilities Simulation
Simulation measures distances to instabilitites

= Model-based optimization methods use past simulation
results to reduce the number of simulations needed

— Surrogate models constructed using existing expensive objective values

— Optimization over surrogate models determines next parameter set to evaluate
e Distance to an instability region can be well-behaved even though transitions are sharp

= Decisions need to be made regarding the optimization problem

— Minimize the sum of weighted measures

Energy Residual [MeV], Lead208 RMS Residual [fm], Lead208

— Minimize performance with additional constraints
* Analytic constraints on actuators, such as Bqc > 3
e Simulation constraints like bounds on distance to instability |

— Multi-objective optimization and Pareto surfaces

= Additional information can improve performance
— Exploit structure in the objective function and constraints
— Use any available partial derivative information




A Common Structure: Weighted Summations

max f(x) + Eiwigi(x)

=  Approximate the lowest level functions

— Performance metric

— Measures of distance to instability
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Use available derivative information 107}
— Build better models with curvature
— Can use partial derivatives

Many benefits from using structure

Best f value found

— Better approximations
— Reduced number of simulation

Objective weights are parameters

— Explore alternative choices

e Reuse function approximations 200 400 600 800 1000
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e Reoptimize in fewer evaluations



Derivative-free Constrained Optimization

Two types of constraints

Analytic constraints such as bounds on
variables and linear combinations
e For example, By <3
Simulation constraints such as bounds
on the distance to outer edge instability
e Forexample, g,(x) 20.05

= More information on the constraints
and objective functions leads to better
performance

Structure of the functions

Partial or full derivative information

=  Solver capability should handle any
additional information provided

= Reoptimize if the functions change

Best Merit Function Value
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Test problem (n=15): 11 smooth constraints



Constrained Optimization with Derivatives

Assume availability of derivative information

— Jacobian of constraints with respect to design and state
variables

— Gradient of the objective function with respect to design
and state variables

— Approximation or exact Hessian of the Lagrangian
Apply a Newton-based method
— Solve a quadratic program to obtain a search direction

— Use a line-search or trust-region method for global
convergence

Linearly-constrained augmented Lagrangian method in TAO
— Compute a step toward feasibility using Newton step

— Make a step toward optimality using a reduced-space
quadratic programming step 10° | &M =256(1)

— Perform a line-search in the full space -A-M =256(8)

— Requires two linearized forward and adjoint solves per 10" : ]

iteration 16 64 256 1024 4096
. - Number of Cores
— Obtains good scalability on test problems umber r
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A Digression into Nonsmooth Optimization

®= Free boundaries model the interface between different physics
— For example, the Grad-Shafranov equation partitions space into plasma and vacuum
— Solution is continuous but nondifferentiable across the interface
— Can be modeled with differential variational inequalities
— Results in nonsmooth functions

= Optimization algorithms may need to change for nondifferentiable functions
— Construct smooth models of nonsmooth functions and apply existing methods

e Many times ignoring nonsmoothness will work
e (Can get “trapped” at points of nondifferentiability
— Alternative methods can overcome these problems
e There are a variety of known methods
e Have similarities to our existing methods



Multi-Objective Optimization

Construct a Pareto surface
— Explore surface to make tradeoffs

— Useful mainly for small number of
objective functions

= Performance optimization
— Minimize run time
— Minimize energy consumed
— Discrete decision variables

=  SUPER SciDAC Institute funds work for
black-box simulations

= Similar techniques could be developed
for grey-box simulations

— Opportunity for deeper development
and interactions

— Might be applicable to design
optimization problems
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min{f(x) . I=c(x) = u} E;

=  QOpen-source package for numerical optimization on high-performance architectures
— Some development funded under SciDAC-1 and SciDAC-2
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e Chemisty (NWChem), Nuclear Physics (UNEDF — HFBTHO, HFODD, MFDn)
* Image processing, Machine learning, Medical applications
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— Unconstrained and bound-constrained optimization methods
e Black-box methods — POUNDER and others
e Gray-box methods — POUNDERs for nonlinear least squares
e Gradient-based methods — quasi-Newton methods
¢ Hessian-based methods — Newton with a trust region and/or line search
— PDE-constrained optimization methods using derivatives
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— Methods for complementarity problems and variational inequalities
e Active-set methods
e Semismooth Newton methods

http://www.mcs.anl.gov/tao
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Some Discussion Questions

=  What optimization problems does COMPASS need to solve?
— What methods are you using and are you happy with them?
— What are the bottlenecks in solving these problems?

=  What new classes of problems would you want to solve with better tools?

12



